
Careful Who You Trust

Jake Valletta

Erik Barzdukas

Dillon Franke

©2022 Mandiant 2

Introductions

Jake Valletta

• 10+ years offensive security

• Focuses/Interests:
– Mobile Security

– Embedded/IoT

– Reverse Engineering

– Network Protocol Analysis

Erik Barzdukas

• Focuses/Interests:
– Mobile Platforms

– Embedded Devices

– Ghidra Time

Dillon Franke

• Undergrad/Master’s at Stanford
University

• Focuses/Interests:
– Application Security

– Static Code Analysis

– Reverse Engineering

– Red Teaming

©2022 Mandiant 3

Agenda

• Initial IoT Camera Research

• Kalay P2P Network

• Attacking the Kalay Network: CVE-2021-28372

• Device Compromise Case Studies

• Conclusions

©2022 Mandiant 4

Initial Research

• Research started in Fall 2020

• General interest in smart cameras
– Purchased 10+ unique camera models to practice/teach embedded

security

– No specific objectives other than “let’s see what we can find!”

• Common themes:
– Embedded hardware testing

– Mobile applications

– Reverse engineering

– Web APIs

Mobile Application Analysis

• Download app from app store(s)

• Configure smart camera as a normal user
would

Static analysis:

• apktool/baksmali/IDA Pro

Dynamic analysis:

• rooted/Jailbroken devices

• Proxy network traffic

• frida!

Multi-Pronged Approach

5

Device Analysis

• Physical attacks & debug interfaces
– UART/JTAG/chip-off

• Analyze network traffic

• Find firmware images and analyze with IDA
Pro/Ghidra

• Goals: Focus on getting local shell, apply
persistence, add additional tools
– gdb, tcpdump, busybox, frida

Embedded Devices:

• Active UART pins with access to
bootloader (usually Das U-Boot)
and OS (usually Linux)

• Non-encrypted data partitions on
eMMC + NAND flash

• Default (or widely known)
credentials

• Everything runs as root

• Non-encrypted or signed
firmware images allow research
without purchasing devices

• Shared code-base between
vendors

Looking Ahead – The Results

6

Mobile Apps:

• Incomplete/nonexistent
certificate pinning

• Lack of platform
attestation/jailbreak detection

• Easier to reverse libraries and
code

• Malware-esque packers +
obfuscation

Web APIs:

• Unauthenticated endpoints

• Appalling error handling

• Input handling and sanitization

• Username enumeration

• Weak password policies

• Lack of rate limiting

• Public Swagger docs

• HTTP (!) + custom AES encryption

• Early network analysis of a particular
device was unusual

– Zero TCP traffic during an audio/video stream (all
UDP)

– Non-standard ports

– Binary (non-ASCII) looking data

– Not high entropy

– Patterns in packet data and packet sizes

First Unique Finding – What’s this UDP Stuff?

7

• Developed by ThroughTek Co., Ltd. (“TUTK”)

• Taiwanese-based software company

• A platform for manufactures/OEMs to enable remote connectivity of smart devices
– Over 83 Million registered devices and 1.1 billion monthly connections

– Implemented as an SDK

– Each device assigned a unique identifier (“UID”)

Enter: The Kalay Network

8

• UDP-based communication
– Can use TCP in some cases

• Various encodings on binary data
– Bit shifting, byte swapping, XOR

On The Wire

9

• Additional layer of security with “DTLS” feature
– Versions 3.1.10+ of Kalay SDK

– Wraps AV layer in Datagram Transport Layer Security session
in PSK mode

Talkin’ Kalay

10

• Captured hundreds of MB of Kalay PCAP data

• Created a Python implementation of the
Kalay protocol (pytutk)

• Used in conjunction with scapy to do:
– Transparent encoding/decoding of raw messages

– Object-Oriented approach to constructing and
analyzing Kalay messages

– Easy to use API to establish connections

• Allowed us to send messages that looked like
any node in the network (but mostly Clients
and Devices)
– Let the fun begin!

Kalay Network Topology

11

• Masters: Direct Clients and Devices to the
appropriate Server

• Servers: Connect Clients and Device and
optionally relay traffic as needed

• Devices: Smart Camera, DVR, Doorbell

• Clients: Mobile/Desktop Apps

Kalay Connection Modes

12

• Network mode selected automatically based on
network topology / considerations
– NAT type (Symmetric versus Restricted/PR)

• Three Modes are Supported
– P2P: Device + Client able to communicate directly (across

network boundaries)

– RLY: Device + Client require a relay to establish connection
(e.g. symmetric NAT scenarios)

– LAN: Device + Client are on same network

• UID used by Client to establish connection with a
Device

– AuthKey (if enabled) also required to establish connection with a
Device

Authentication Layer

13

• Built in authentication layer for sensitive
functionality (AV/IOCTRL)

– Most devices used device-specific username/password

– Different credentials than a user’s login

• Multiple layers exist after connection is
established

– Audio Video (“AV”)

– RPC Interface (known as IOCTRL)

– Protocol Tunneling (not used frequently)

– Real-Time Data Transfer (not used frequently)

Parsing Audio / Video

14

Device Registration Flow

15

Device Registration Flow

16

Device Registration Flow

17

Device Registration Flow

18

Device Registration Flow

19

Device Registration Flow

20

Revisiting Device Registration Flow

21

• What’s in a device registration message?
– Kalay UID

– Metadata (MAC address, versions)

– Timestamps

– Serial numbers

• What matters in a device registration message?
– Kalay UID

CVE-2021-28372: Device Impersonation

22

• Anyone who knows a device’s UID can
register that device on the Kalay network

– An attacker could compromise up to 83 million IoT cameras

• Published jointly with U.S. Cybersecurity
Infrastructure Security Agency (“CISA”)

• TUTK shared recommendations on their
website

– Update the TUTK library version

– Use “AuthKey” and “DTLS” features of Kalay network

https://www.mandiant.com/resources/mandiant-discloses-critical-vulnerability-affecting-iot-devices

https://www.mandiant.com/resources/mandiant-discloses-critical-vulnerability-affecting-iot-devices

CVE-2021-28372: Device Impersonation

23

CVE-2021-28372: Device Impersonation

24

CVE-2021-28372: Device Impersonation

25

CVE-2021-28372: Device Impersonation

26

CVE-2021-28372: Device Impersonation

27

What’s Next?

28

• CVE-2021-28372 allows us to obtain credentials needed to talk to remote
devices (bad)

– Implicit compromise of audio / video data (very bad)

– Unauthorized use of IOCTRL layer (maybe bad)

…But what if we found bugs in specific camera models/APIs that could be
triggered by IOCTRL?

©2022 Mandiant

Case Study #1

Case Study #1: Hardware & Physical Recon

30

• Popular consumer IoT Camera

• Low cost, targeted for home use

• Recon
– Exposed USB

– SD card

• Device deconstruction
– Searchin' for serial (UART)

• Mapping out components

UART Connection XMC NOR Flash

RX

TX

GND

Case Study #1: Mobile App & Firmware Analysis

31

• Downloaded and reverse engineered mobile application

• Looked for API calls to download camera firmware images
– Unsigned firmware images!

©2021 Mandiant

Case Study #1: Mobile App & Firmware Analysis Cont.

32

• Ghidra time/searching for system()

– Focus on input we can control

• Consumer IoT devices tend to be "bash scripts in C"

• String analysis

• Execution from SD Card!

• Unsafely unTARed to local storage

– Out of date busybox tar

• Persistence?

– App boot processes captured in Bash scripts

• /mnt/mtd/boot.sh

Case Study #1: Understanding Remote Kalay Functionality

33

• Iterative process
– Root device

– Identify interesting functionality

– Capture traffic

– Analyze traffic

– Analyze firmware

– Write parser

• IOCTRL functionality of note:

– Control LED light

– Control A/V flow

– Get/set device parameters

– Remote firmware updates

Kalay IOType for Firmware Update

Kalay IOType Payload

Case Study #1: RCE - Chaining it All Together

34

• Create malicious firmware update package and
host in Cloud

• Device impersonation (CVE-2021-28372) to steal
credentials

• Initiate connection to victim camera and initiate
firmware update to overwrite boot.sh

• Reverse shell!

Malicious Firmware Update Remote Code Execution

35

Remediation

36

• Mandiant worked closely with vendor to remediate:
– Addition of AuthKey feature

– Digitally signing firmware images

– Removed SD Card execution

– Protecting UART connection

©2022 Mandiant

Case Study #2

Case Study #2: Custom Authentication Layer

38

• Uses a custom authentication over Kalay’s IOCTRL layer
– Does not rely on Kalay username/password auth: hardcoded credentials used

– Uses a challenge/response format with custom encryption

• Mobile app + frida to understand data packet formats
– Device-code is MIPS and not as easy to analyze

Case Study #2: Custom Authentication

39

Case Study #2: Custom Authentication

40

Case Study #2: Custom Authentication

41

Case Study #2: Custom Authentication

42

Case Study #2: Custom Authentication

43

Case Study #2: Custom Authentication

44

Case Study #2: Sounds Secure?

45

• Custom auth protocol is effective at validating that the Client is a trusted
connection…

• However, it assumes that devices cannot be impersonated
– Our friend CVE-2021-28372 strikes again!

• Attack is very similar to general CVE-2021-28372 exploitation with one key
difference:

– Attacker needs to somehow leak the secret from either the Client or Device or demonstrate the ability to
decrypt/encrypt a challenge

Case Study #2: Breaking Custom Authentication

46

Case Study #2: Breaking Custom Authentication

47

Case Study #2: Breaking Custom Authentication

48

Case Study #2: Breaking Custom Authentication

49

Case Study #2: Breaking Custom Authentication

50

Case Study #2: Breaking Custom Authentication

51

Case Study #2: Breaking Custom Authentication

52

Case Study #2: Breaking Custom Authentication

53

Case Study #2: Breaking Custom Authentication

54

Case Study #2: Post-Authentication

55

• Still need another vulnerability to actually compromise device

• IP Camera #2 supports 50+ custom IOCTRL messages post-authentication

• How about remote firmware updates?
– Of course!

Case Study #2: Firmware Updates Strike Again!

56

• Custom IOCTRL message containing:
– URL to firmware image

– MD5 of firmware image

– Additional data that doesn’t matter

• Downloaded and unpacked by victim device
– Executes a shell script inside of the archive as root!

• Exact same scenario as IP Cam #1!
– Reverse shell to a Cloud host as root

Case Study #2: Demo Time!

57

Remediation

58

• Mandiant worked closely with vendor to remediate:
– Addition of AuthKey feature

– Removal of remote firmware update functionality

©2022 Mandiant

Bonus Case Study: UIDs & Web APIs

©2022 Mandiant 60

• 20 Byte UID: XXXXXXXXXXXXXXXX111A (Static last 4 bytes)

• Wanted to assess the viability of a motivated attacker to brute force a single UID

TUTK UID Brute Forcing: Is it Practical?

©2022 Mandiant 61

• 20 Byte UID: XXXXXXXXXXXXXXXX111A (Static last 4 bytes)

• ThroughTek Devices (# of UIDs): n = 83 million

• Total Keyspace (K)

• c: single character keyspace = 36

• l: length of all characters = 16

• K = cl = 3616 = 7.96 x 1024 potential UIDs

• P(collision) = n / K = 83 x 106 / 7.96 x 1024 ~= 1.04 x 10−17

TUTK UID Brute Forcing: Is it Practical?

©2022 Mandiant 62

• 20 Byte UID: XXXXXXXXXXXXXXXX111A (Static last 4 bytes)

• ThroughTek Devices (# of UIDs): 83 million

• K = cl = 3616 = 7.96 x 1024 potential UIDs

• P(collision) ~= 1.04 x 10−17

• Average discovery packet size:

• d = 52 bytes

• Assuming a 1 Gb/s link rate:

• Discovery Requests per day (r), per server:

– r = ((1 request/d bytes) * (1 byte/8 bits) * (1,000,000,000 bits/second)) / 86400 s/day = 2.07 x 1011

requests/day

TUTK UID Brute Forcing: Is it Practical?

©2022 Mandiant 63

• 20 Byte UID: XXXXXXXXXXXXXXXX111A (Static last 4 bytes)

• ThroughTek Devices (# of UIDs): 83 million

• K = cl = 3616 = 7.96 x 1024 potential UIDs

• P(collision) ~= 1.04 x 10−17

• r = 2.07 x 1011 requests/day

• Expected value for number of days to get a collision (Geometric distribution):

• v = number of servers/cores

• E[days] = 1 / P(collision) = (K/n) * (1/(v * r))

TUTK UID Brute Forcing: Is it Practical?

©2022 Mandiant 64

• E[days] = (K/n) * (1/(v * r))

Number of servers

D
ay

s
u

n
ti

l a
 c

o
lli

si
o

n

463,000 servers running in parallel could
brute force 1 UID within a day

TUTK UID Brute Forcing: Is it Practical?

©2022 Mandiant 65

Not Really.

TUTK UID Brute Forcing: Is it Practical?

Insecure Web APIs?

• The existence of CVE-2021-28372 means protecting customer TUTK UIDs is of the utmost importance

• IoT Camera apps often write their own APIs to access TUTK UIDs
– E.g. GET /api/device/get_uid

• We assessed whether these APIs were implemented correctly

66

Getting UIDs: Insecure Camera APIs

• IP camera APIs were often not
built with security in mind
– Many APIs returned the TUTK UID tied to

an account

– For some vendors, these API calls were
either:

• Unauthenticated

• Used default credentials

• Enumerable UIDs

• Did not exploit further
– Mass compromise of TUTK UIDs seems

possible

67

Fun Network Security?

• Some mobile apps for low-cost devices used HTTP (no SSL) with custom encryption layer

68

Fun Network Security!

• Python script + Burp plugin Piper used to decrypt /
encrypt AES in Burp Pro
– https://portswigger.net/bappstore/e4e0f6c4f0274754917dcb5f4937bb9e

– Piper let’s you pipe output/input from Linux command-line tools into
Burp fields

• Identified lots of bugs in web APIs by using process above
– IDORs

– Injection

– Disclosures

69

https://portswigger.net/bappstore/e4e0f6c4f0274754917dcb5f4937bb9e

©2022 Mandiant

Conclusions

Conclusions

71

• Compromising a modern IoT device locally is often easy

• Lack of hardening measures on devices led to RCE in all cases we explored

• Devices utilizing the Kalay protocol without “AuthKey” can be impersonated and accessed by
attackers (CVE-2021-28372)

• Kalay UIDs need to be protected and retrieved securely from web APIs

• Platform issues amplify device issues

• Huge thanks to: CISA, ThroughTek, and various camera vendors, and of course Qualcomm Team!

Thank You.

