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Introductions

Jake Valletta

• 10+ years offensive security

• Focuses/Interests:
– Mobile Security

– Embedded/IoT

– Reverse Engineering

– Network Protocol Analysis

Erik Barzdukas

• Focuses/Interests:
– Mobile Platforms

– Embedded Devices

– Ghidra Time

Dillon Franke

• Undergrad/Master’s at Stanford 
University

• Focuses/Interests:
– Application Security

– Static Code Analysis

– Reverse Engineering

– Red Teaming
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Agenda

• Initial IoT Camera Research

• Kalay P2P Network

• Attacking the Kalay Network: CVE-2021-28372

• Device Compromise Case Studies

• Conclusions
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Initial Research

• Research started in Fall 2020

• General interest in smart cameras
– Purchased 10+ unique camera models to practice/teach embedded 

security

– No specific objectives other than “let’s see what we can find!”

• Common themes:
– Embedded hardware testing

– Mobile applications

– Reverse engineering

– Web APIs



Mobile Application Analysis

• Download app from app store(s)

• Configure smart camera as a normal user 
would

Static analysis:

• apktool/baksmali/IDA Pro

Dynamic analysis:

• rooted/Jailbroken devices

• Proxy network traffic

• frida!

Multi-Pronged Approach
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Device Analysis

• Physical attacks & debug interfaces
– UART/JTAG/chip-off

• Analyze network traffic

• Find firmware images and analyze with IDA 
Pro/Ghidra

• Goals: Focus on getting local shell, apply 
persistence, add additional tools
– gdb, tcpdump, busybox, frida



Embedded Devices:

• Active UART pins with access to 
bootloader (usually Das U-Boot) 
and OS (usually Linux)

• Non-encrypted data partitions on 
eMMC + NAND flash

• Default (or widely known) 
credentials

• Everything runs as root

• Non-encrypted or signed 
firmware images allow research 
without purchasing devices

• Shared code-base between 
vendors

Looking Ahead – The Results
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Mobile Apps:

• Incomplete/nonexistent 
certificate pinning

• Lack of platform 
attestation/jailbreak detection

• Easier to reverse libraries and 
code

• Malware-esque packers + 
obfuscation

Web APIs:

• Unauthenticated endpoints

• Appalling error handling

• Input handling and sanitization

• Username enumeration

• Weak password policies

• Lack of rate limiting

• Public Swagger docs

• HTTP (!) + custom AES encryption



• Early network analysis of a particular 
device was unusual

– Zero TCP traffic during an audio/video stream (all 
UDP)

– Non-standard ports

– Binary (non-ASCII) looking data

– Not high entropy

– Patterns in packet data and packet sizes

First Unique Finding – What’s this UDP Stuff?
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• Developed by ThroughTek Co., Ltd. (“TUTK”)

• Taiwanese-based software company

• A platform for manufactures/OEMs to enable remote connectivity of smart devices
– Over 83 Million registered devices and 1.1 billion monthly connections

– Implemented as an SDK

– Each device assigned a unique identifier (“UID”)

Enter: The Kalay Network
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• UDP-based communication
– Can use TCP in some cases

• Various encodings on binary data
– Bit shifting, byte swapping, XOR

On The Wire
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• Additional layer of security with “DTLS” feature
– Versions 3.1.10+ of Kalay SDK

– Wraps AV layer in Datagram Transport Layer Security session 
in PSK mode



Talkin’ Kalay
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• Captured hundreds of MB of Kalay PCAP data

• Created a Python implementation of the 
Kalay protocol (pytutk)

• Used in conjunction with scapy to do:
– Transparent encoding/decoding of raw messages

– Object-Oriented approach to constructing and 
analyzing Kalay messages

– Easy to use API to establish connections

• Allowed us to send messages that looked like 
any node in the network (but mostly Clients 
and Devices)
– Let the fun begin!



Kalay Network Topology
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• Masters: Direct Clients and Devices to the 
appropriate Server

• Servers: Connect Clients and Device and 
optionally relay traffic as needed

• Devices: Smart Camera, DVR, Doorbell

• Clients: Mobile/Desktop Apps



Kalay Connection Modes
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• Network mode selected automatically based on 
network topology / considerations
– NAT type (Symmetric versus Restricted/PR)

• Three Modes are Supported 
– P2P: Device + Client able to communicate directly (across 

network boundaries)

– RLY: Device + Client require a relay to establish connection 
(e.g. symmetric NAT scenarios)

– LAN: Device + Client are on same network

• UID used by Client to establish connection with a 
Device

– AuthKey (if enabled) also required to establish connection with a 
Device



Authentication Layer
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• Built in authentication layer for sensitive 
functionality (AV/IOCTRL)

– Most devices used device-specific username/password

– Different credentials than a user’s login

• Multiple layers exist after connection is 
established

– Audio Video (“AV”)

– RPC Interface (known as IOCTRL)

– Protocol Tunneling (not used frequently)

– Real-Time Data Transfer (not used frequently)



Parsing Audio / Video
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Device Registration Flow
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Device Registration Flow
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Device Registration Flow
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Device Registration Flow
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Device Registration Flow
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Device Registration Flow
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Revisiting Device Registration Flow

21

• What’s in a device registration message?
– Kalay UID

– Metadata (MAC address, versions)

– Timestamps

– Serial numbers

• What matters in a device registration message?
– Kalay UID



CVE-2021-28372: Device Impersonation
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• Anyone who knows a device’s UID can 
register that device on the Kalay network

– An attacker could compromise up to 83 million IoT cameras

• Published jointly with U.S. Cybersecurity 
Infrastructure Security Agency (“CISA”)

• TUTK shared recommendations on their 
website

– Update the TUTK library version

– Use “AuthKey” and “DTLS” features of Kalay network

https://www.mandiant.com/resources/mandiant-discloses-critical-vulnerability-affecting-iot-devices

https://www.mandiant.com/resources/mandiant-discloses-critical-vulnerability-affecting-iot-devices


CVE-2021-28372: Device Impersonation
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CVE-2021-28372: Device Impersonation
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CVE-2021-28372: Device Impersonation
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CVE-2021-28372: Device Impersonation

26



CVE-2021-28372: Device Impersonation
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What’s Next?
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• CVE-2021-28372 allows us to obtain credentials needed to talk to remote 
devices (bad)

– Implicit compromise of audio / video data (very bad)

– Unauthorized use of IOCTRL layer (maybe bad)

…But what if we found bugs in specific camera models/APIs that could be 
triggered by IOCTRL?
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Case Study #1



Case Study #1: Hardware & Physical Recon
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• Popular consumer IoT Camera

• Low cost, targeted for home use

• Recon
– Exposed USB

– SD card

• Device deconstruction
– Searchin' for serial (UART)

• Mapping out components

UART Connection XMC NOR Flash

RX

TX

GND



Case Study #1: Mobile App & Firmware Analysis
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• Downloaded and reverse engineered mobile application

• Looked for API calls to download camera firmware images
– Unsigned firmware images!



©2021 Mandiant

Case Study #1: Mobile App & Firmware Analysis Cont.
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• Ghidra time/searching for system()

– Focus on input we can control

• Consumer IoT devices tend to be "bash scripts in C"

• String analysis

• Execution from SD Card!

• Unsafely unTARed to local storage

– Out of date busybox tar

• Persistence?

– App boot processes captured in Bash scripts

• /mnt/mtd/boot.sh



Case Study #1: Understanding Remote Kalay Functionality
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• Iterative process
– Root device

– Identify interesting functionality

– Capture traffic

– Analyze traffic

– Analyze firmware

– Write parser

• IOCTRL functionality of note:

– Control LED light

– Control A/V flow

– Get/set device parameters

– Remote firmware updates

Kalay IOType for Firmware Update

Kalay IOType Payload



Case Study #1: RCE - Chaining it All Together
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• Create malicious firmware update package and 
host in Cloud

• Device impersonation (CVE-2021-28372) to steal 
credentials

• Initiate connection to victim camera and initiate 
firmware update to overwrite boot.sh

• Reverse shell!



Malicious Firmware Update Remote Code Execution 
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Remediation
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• Mandiant worked closely with vendor to remediate:
– Addition of AuthKey feature

– Digitally signing firmware images

– Removed SD Card execution

– Protecting UART connection
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Case Study #2



Case Study #2: Custom Authentication Layer
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• Uses a custom authentication over Kalay’s IOCTRL layer
– Does not rely on Kalay username/password auth: hardcoded credentials used

– Uses a challenge/response format with custom encryption

• Mobile app + frida to understand data packet formats
– Device-code is MIPS and not as easy to analyze



Case Study #2: Custom Authentication
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Case Study #2: Custom Authentication
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Case Study #2: Custom Authentication
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Case Study #2: Custom Authentication
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Case Study #2: Custom Authentication
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Case Study #2: Custom Authentication
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Case Study #2: Sounds Secure?
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• Custom auth protocol is effective at validating that the Client is a trusted 
connection…

• However, it assumes that devices cannot be impersonated 
– Our friend CVE-2021-28372 strikes again!

• Attack is very similar to general CVE-2021-28372 exploitation with one key 
difference:

– Attacker needs to somehow leak the secret from either the Client or Device or demonstrate the ability to 
decrypt/encrypt a challenge



Case Study #2: Breaking Custom Authentication
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Case Study #2: Breaking Custom Authentication
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Case Study #2: Breaking Custom Authentication
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Case Study #2: Breaking Custom Authentication
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Case Study #2: Breaking Custom Authentication
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Case Study #2: Breaking Custom Authentication
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Case Study #2: Breaking Custom Authentication
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Case Study #2: Breaking Custom Authentication
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Case Study #2: Breaking Custom Authentication
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Case Study #2: Post-Authentication 
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• Still need another vulnerability to actually compromise device

• IP Camera #2 supports 50+ custom IOCTRL messages post-authentication

• How about remote firmware updates?
– Of course!



Case Study #2: Firmware Updates Strike Again!
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• Custom IOCTRL message containing:
– URL to firmware image

– MD5 of firmware image

– Additional data that doesn’t matter

• Downloaded and unpacked by victim device
– Executes a shell script inside of the archive as root!

• Exact same scenario as IP Cam #1!
– Reverse shell to a Cloud host as root



Case Study #2: Demo Time!
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Remediation
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• Mandiant worked closely with vendor to remediate:
– Addition of AuthKey feature

– Removal of remote firmware update functionality
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Bonus Case Study:  UIDs & Web APIs
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• 20 Byte UID: XXXXXXXXXXXXXXXX111A (Static last 4 bytes)

• Wanted to assess the viability of a motivated attacker to brute force a single UID

TUTK UID Brute Forcing: Is it Practical?
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• 20 Byte UID: XXXXXXXXXXXXXXXX111A (Static last 4 bytes)

• ThroughTek Devices (# of UIDs): n = 83 million

• Total Keyspace (K)

• c: single character keyspace = 36

• l: length of all characters = 16

• K = cl = 3616 = 7.96 x 1024 potential UIDs

• P(collision) = n / K = 83 x 106 / 7.96 x 1024 ~= 1.04 x 10−17

TUTK UID Brute Forcing: Is it Practical?



©2022 Mandiant 62

• 20 Byte UID: XXXXXXXXXXXXXXXX111A (Static last 4 bytes)

• ThroughTek Devices (# of UIDs): 83 million

• K = cl = 3616 = 7.96 x 1024 potential UIDs

• P(collision) ~= 1.04 x 10−17

• Average discovery packet size:

• d = 52 bytes

• Assuming a 1 Gb/s link rate:

• Discovery Requests per day (r), per server:

– r = ((1 request/d bytes) * (1 byte/8 bits) * (1,000,000,000 bits/second)) / 86400 s/day  = 2.07 x 1011

requests/day

TUTK UID Brute Forcing: Is it Practical?
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• 20 Byte UID: XXXXXXXXXXXXXXXX111A (Static last 4 bytes)

• ThroughTek Devices (# of UIDs): 83 million

• K = cl = 3616 = 7.96 x 1024 potential UIDs

• P(collision) ~= 1.04 x 10−17

• r = 2.07 x 1011 requests/day

• Expected value for number of days to get a collision (Geometric distribution):

• v = number of servers/cores

• E[days] = 1 / P(collision) = (K/n) * (1/(v * r))

TUTK UID Brute Forcing: Is it Practical?
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• E[days] = (K/n) * (1/(v * r))

Number of servers

D
ay

s 
u

n
ti

l a
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o
lli
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o

n

463,000 servers running in parallel could 
brute force 1 UID within a day

TUTK UID Brute Forcing: Is it Practical?
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Not Really.

TUTK UID Brute Forcing: Is it Practical?



Insecure Web APIs?

• The existence of CVE-2021-28372 means protecting customer TUTK UIDs is of the utmost importance

• IoT Camera apps often write their own APIs to access TUTK UIDs
– E.g. GET /api/device/get_uid

• We assessed whether these APIs were implemented correctly

66



Getting UIDs: Insecure Camera APIs

• IP camera APIs were often not 
built with security in mind
– Many APIs returned the TUTK UID tied to 

an account

– For some vendors, these API calls were 
either:

• Unauthenticated

• Used default credentials

• Enumerable UIDs

• Did not exploit further
– Mass compromise of TUTK UIDs seems 

possible
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Fun Network Security?

• Some mobile apps for low-cost devices used HTTP (no SSL) with custom encryption layer
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Fun Network Security!

• Python script + Burp plugin Piper used to decrypt / 
encrypt AES in Burp Pro
– https://portswigger.net/bappstore/e4e0f6c4f0274754917dcb5f4937bb9e

– Piper let’s you pipe output/input from Linux command-line tools into 
Burp fields

• Identified lots of bugs in web APIs by using process above
– IDORs

– Injection

– Disclosures
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https://portswigger.net/bappstore/e4e0f6c4f0274754917dcb5f4937bb9e
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Conclusions



Conclusions
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• Compromising a modern IoT device locally is often easy

• Lack of hardening measures on devices led to RCE in all cases we explored

• Devices utilizing the Kalay protocol without “AuthKey” can be impersonated and accessed by 
attackers (CVE-2021-28372)

• Kalay UIDs need to be protected and retrieved securely from web APIs

• Platform issues amplify device issues

• Huge thanks to: CISA, ThroughTek, and various camera vendors, and of course Qualcomm Team!



Thank You.




