
Exploiting the Bells and Whistles

Uncovering OEM Vulnerabilities in
Android

Jake Valletta

May 18, 2014

Who Am I

• Consultant at Mandiant (er, FireEye)

• Mobile security research and tool
development

– www.thecobraden.com/projects/cobradroid/

– github.com/jakev/

• @jake_valletta

CarolinaCon X http://www.thecobraden.com 2

This talk is NOT...

• An audit of the Android Open Source Project
(AOSP)

• An introduction to Android assessment tools

• How to write ARM exploits

CarolinaCon X http://www.thecobraden.com 3

This talk is...

• How to determine what manufactures (OEMs)
and carriers add and change in the AOSP

• How a malicious user can exploit poorly
implemented changes and features

• An exploration of Android platform security

CarolinaCon X http://www.thecobraden.com 4

Motivations

• No “primer” on device testing

• No (free) tools for device testing

• Answer the question: Someone hands you a
phone – Where are the vulnerabilities?

CarolinaCon X http://www.thecobraden.com 5

Motivations

• No “primer” on device testing

• No (free) tools for device testing

• Answer the question: Someone hands you a
phone – Where are the vulnerabilities?

– Where and what to look for

– What tools to use

CarolinaCon X http://www.thecobraden.com 6

Example Vulnerabilities

• Information disclosure

– Can a malicious application or user “pillage”
system or personal data?

• Privilege escalation

– Can a malicious application or user escalate
their privileges on the device?

• Denial of service

– Can a malicious application cause denial of
service like conditions to a device?

CarolinaCon X http://www.thecobraden.com 7

Where and What?
OEM Changes & Additions

http://www.thecobraden.com 8 CarolinaCon X

Setup

• Physical access + USB Debugging (“adb”)

• No root access

CarolinaCon X http://www.thecobraden.com 9

Application Components

• Activity

– UI, visual

• Service

– Background tasks

• Content Provider

– Abstraction for databases or information
sharing via IPC

• Broadcast Receiver

– Receivers of IPC

• Native library

CarolinaCon X http://www.thecobraden.com 10

Application Components

• Can be exported (callable by others)

– Explicitly

– Implicitly

• Debuggable app or “<intent-filter>” presence

• Be careful what you export!

– Always use permissions

CarolinaCon X http://www.thecobraden.com 11

Application Permissions

• Defined by applications

– Other application components “use” these
permissions

– The Android “core” defines 100+ permissions

• Applied to components

• Different levels of protection

– normal

– dangerous

– systemOrSignature

– system

 CarolinaCon X http://www.thecobraden.com 12

Exposed Activities

• Usually less critical (still an issue)

• Debugging screens, “hidden” menus, etc.

CarolinaCon X http://www.thecobraden.com 13

Exposed Activities

• Usually less critical (still an issue)

• Debugging screens, “hidden” menus, etc.

CarolinaCon X http://www.thecobraden.com 14

NO PROTECTION LEVEL

Exposed Services

• Authenticator services

• Other sensitive actions?

CarolinaCon X http://www.thecobraden.com 15

Exposed Providers

• Databases with sensitive information

– Wrong permissions

– No permissions (wut)

CarolinaCon X http://www.thecobraden.com 16

Exposed Providers

• Databases with sensitive information

– Wrong permissions

– No permissions (wut)

CarolinaCon X http://www.thecobraden.com 17

“Dangerous” Protection Level

SECRET_CODE Receivers

• Receiver with special data/action Intent filter

• “Backdoor” access to application

CarolinaCon X http://www.thecobraden.com 18

Android Frameworks

• Installed to /system/framework/

• Programming APIs, resources

• Loaded into Zygote VM at startup

– $BOOTCLASSPATH variable

CarolinaCon X http://www.thecobraden.com 19

Android Frameworks

• Need to rebuild “android.jar” to use new APIs
in Eclipse

– Usually need to write in DEX/Smali 

CarolinaCon X http://www.thecobraden.com 20

Android Others

• Android System Service

• /system/permissions/platform.xml

– Permission to Group ID Mappings

• Example: “android.permission.INTERNET”  inet

– Additional permissions assigned to group

• Example: Give “shell” permission
“android.permission.SET_DEBUG_APP”

CarolinaCon X http://www.thecobraden.com 21

System Log Buffers

• Located at /dev/log/

• Android provides standard logging capabilities

– Log.d(“MyApp”, “CarolinaCon Rulz”);

– events, main, radio, system

CarolinaCon X http://www.thecobraden.com 22

System Log Buffers

• Located at /dev/log/

• Android provides standard logging capabilities

– Log.d(“MyApp”, “CarolinaCon Rulz”);

– events, main, radio, system

CarolinaCon X http://www.thecobraden.com 23

System Binaries

• Can be accessed from command line or from
Android app

• Debugging and testing functionality

CarolinaCon X http://www.thecobraden.com 24

Native Libraries

• Installed to /system/lib/ or app directory

• Allows Java to communicate with C++ via
Java Native Interface (JNI)

• Any application can read these

CarolinaCon X http://www.thecobraden.com 25

Device Driver Interactions

• Usually in /dev/

• Very dangerous if exposed to applications

CarolinaCon X http://www.thecobraden.com 26

Using DTF (Device Testing
Framework)

OEM Changes & Additions

http://www.thecobraden.com 27 CarolinaCon X

“dtf” Basics

• Device testing framework

– Written in Bash, C, Python (gross)

• “Lead generation”

CarolinaCon X http://www.thecobraden.com 28

“dtf” Basics

• Project specific configuration file

• Package installer and module support

– Modules perform all the exciting functionality

– dtf <module_name>

CarolinaCon X http://www.thecobraden.com 29

Modules: Data Collection

• Collect files from device:

– getsysapps

– getframeworks

– getbins

– getsyslibs

– getpermissions

• Stores all files locally

CarolinaCon X http://www.thecobraden.com 30

Modules: Data Processing

• Application and framework unpacking:

– unframework

– unpacksysapps

• Local database creation:

– appdb

– appdexdb

– frameworkdb

– frameworkdexdb

– devdb

– sysservicedb

CarolinaCon X http://www.thecobraden.com 31

Modules: Data Analysis

• ‘Diff’ing project against AOSP:

– appdiff/appdexdiff

– frameworkdiff/frameworkdexdiff

– sysservicediff

– devdiff

– (provider|service|receiver|activity)diff

– platformdiff

– bindiff

– syslibdiff

CarolinaCon X http://www.thecobraden.com 32

Modules: Data Analysis (cont.)

• Searching for exposure:

– readablefiles

– writablefiles

– suidfiles

– nolauncher

– app-metadata

• CSV of exposed components:

– (secretcode|debuggable|activity|service|provid
er|reciever)csv

CarolinaCon X http://www.thecobraden.com 33

Modules: General Commands

• libinfo

– Searches SO library for JNI calls, sensitive
imports, and device interaction

• secretcode

– Sends a SECRET_CODE intent

• newapp

– Creates a new test application (in Smali)

• classsearch

– Searches DEX databases for class name match

CarolinaCon X http://www.thecobraden.com 34

Closing Thoughts

• Device OEMs and carriers have a lot to learn.

– 1999 style issues

• Issues are extremely apparent, given the
correct tools

• Be careful how much trust you put in your
device!

CarolinaCon X http://www.thecobraden.com 35

Questions?

36

