
CobraDroid
HOOKING ANDROID APPLICATIONS

Jake Valletta
BruCON 2013

About Me

• Consultant at Mandiant

• Pen-testing, IR, forensics, application security
• Strong interests in mobile security

• Mobile security blog and research: “The Cobra Den”
• http://blog.thecobraden.com/

• http://www.thecobraden.com/

• @jake_valletta

Agenda

• Background & Overview

• CobraDroid Features

• Demo

• Future Plans

• Questions & Answers

Background & Overview

Current Situation – Background

• People want/need to analyze Android applications

• Companies pay to be told they are “safe”

• Analyzing malware

• General curiosity (why is Angry Birds asking to use my camera?)

Current Situation – Static Analysis?

• Lots of tools!

• Smali/Baksmali

• Dex2jar

• Apktool

• Dexter by BlueBox

• IDA Pro

• Lots of information on how to tear applications apart…

• …And modify and repackage!

Current Situation – Dynamic Analysis?

• Less common

• “AppUse” by AppSecLabs (closed-source)

• There are plenty of services that will analyze your application

• Upload to website, get results

• NOT ideal for client related work

• “Blackbox”

Goals of CobraDroid

• Create a free and open dynamic analysis platform

• Needs to be easy to install, setup, and use

• Give the tester as much control and visibility as possible

• Make their job easier and successful

• Learn about Android internals

Using CobraDroid

• Setup Android SDK

• Download archive from my
website

• Unzip to “add-ons” directory
(SDK)

• Create new AVD

CobraDroid Features

What is CobraDroid?

• Modified Android build for the emulator

• QEMU emulating ARM code

• Android 2.3.7 (“GingerBread”)

• Modified from the lowest point up

• Kernel

• User-space libraries + tools

• Dalvik VM

• Android applications

Updated Kernel (CobraKernel)

• At the time of development, latest “Goldfish” kernel was 2.6.29

• “kernel.org” publish date of April 13, 2008

• Default kernel with Android 1.5 “Donut” (released Sept 19, 2009)

• Updated to 2.6.36

• Default kernel with Android 3.0 “HoneyComb” (released Feb 22, 2011)

• More powerful configuration

• Full netfilters

• Loadable kernel modules

Bash & BusyBox

• Android 2.3 shell is terrible. Terrible.

• No autocomplete

• No coloring

• No pipes

• Lack of tools/utilities

• No editors

• No [insert your favorite Unix tool]

Bash & BusyBox

LiME Forensics

• Linux Memory Extractor by Joe Sylve (504ensics)

• http://code.google.com/p/lime-forensics/

• Allows for live memory acquisition via Loadable Kernel Module

• Open saved files with Volatility or Dalvik Inspector

• Modified to fit CobraDroid as device driver + user-space API

• https://github.com/jakev/lime-forensics-jakev

LiME Forensics

• “lime” command line utility

• Links against “liblime.so”

• “android.jakev.Lime” class for Android applications

• NOT SAFE - Currently implementing safer solution

• Gives Android application access to kernel driver

Editable Radio & Device Identifiers

• Lets you make the phone look like anything you want!

• Helps with application whitelisting/blacklisting
• Is this a Vodafone? Telefónica? Is it a Nokia? Motorola?

• Previously very tedious to change on emulator
• Radio properties: Modify “emulator-arm” binary

• Device properties: Modify :“/etc/build.prop” and reconstruct the
“system.img”

Editable Radio & Device Identifiers

• Re-written “TelephonyManager” class

• Queries a custom file instead

• Removed “android.os.Build” class initialization in Zygote

• Hooked “SystemProperties” class

• Queries a custom file instead

Editable Radio & Device Identifiers

SSL Validation Bypass

• Allows you to man-in-the-middle any SSL connection

• Disables certificate pinning and CA validation silently

• Re-written constructors and getter/setters

• Works for all default SSL libraries on Android 2.3
• HttpsURLConnection (core.jar)

• DefaultHttpClient (ext.jar)

• SSLSocketFactory (ext.jar)

Application Specific Packet Capture

• Show me only traffic for application X (and application Y)

• Focus on only the traffic you actually care about

• Uses Custom “iptables” rules to redirect traffic

• View in Wireshark afterwards
• Tested on 1.8.5 Stable, 1.11.0 Dev. (incompatible with older versions)

Application Specific Packet Capture

Method Hooking

• CobraDroid uses it to alert on method calls

• Much more to come

• Could have an entire 45 minute talk on hooking the DVM

• I’m going to try and do it in about 7

• TL;DR – Instrumenting method byte-code during Class loading

Method Hooking

• Configuration file: “/etc/hooks.conf”

Method Hooking

• Configuration file: “/etc/hooks.conf”

System JARs

Application APKs

Method Hooking

• Configuration file: “/etc/hooks.conf”

System JARs

Application APKs

Class

Message
Action

Method

Method Hooking

• It’s magic! (Right?)

Hook Step #1 – DVM Startup

• Read configuration file and parse hooks into global DVM memory

• Utilize the “gDvm” variable (DvmGlobals struct)

• For each JAR/DEX file, over-allocate strings, methods, etc. based on
configuration

• Modify calloc() calls when initializing “pDvmDex” (DvmDex struct)

• Structure used to hold resolved classes, methods, etc.

Hook Step #2 – Class/Method Loading

• Read global memory to determine if loaded class and method
should be hooked

• For the given method, allocate n bytes for new DexCode struct
• The original DexCode struct is read-only mapped directly from the DEX file

“DexCode” Structure

Name Format

registers_size u2

ins_size u2

outs_size u2

tries_size u2

debug_info_off u4

insns_size u4

insns u2[insns_size]

padding u2

tries try_item[tries_size]

handlers encoded_catch_handler_list

• Contains all declaration details for a
method

“DexCode” Structure

Name Format

registers_size u2

ins_size u2

outs_size u2

tries_size u2

debug_info_off u4

insns_size u4

insns u2[insns_size]

padding u2

tries try_item[tries_size]

handlers encoded_catch_handler_list

• “insns” is what we actually want to
modify!

• Add new instructions to do X

• Need to repair structure after

• Contains all declaration details for a
method

Hook Step #2 – Class/Method Loading

• Add new instructions to “insns”

• In this case, we call: Landroid/jakev/EventNotifier;.notifyEvent();

• Responsible for printing to logs

• Optionally add our payload message

• Re-align the remaining DexCode structure
• Repair “tries”

• Repair “handlers”

Hook Step #3 – Resolving

• Resolving occurs at runtime, when the DVM must determine what
code to run and where it is located

• Log.d(“here”, “i am a snake”);

In our app’s DEX file

In another DEX file!

Hook Step #3 – Resolving

• Question: How do we call a method or use a string that a DexFile
struct does not know about?

• Answer: Instrument the code with an index beyond the max, then
add checks to dvm.*Resolver() function calls!
• i.e. attempting to resolve string 33 out 32

• Usually this indicates an error condition

Additional Packages

• ProxyDroid

• Makes it painless to proxy traffic on the emulator

• Superuser/“su”

• Provides root level access to the device

• Drozer

• Allows you to assume the role of an Android application at a command line

• EmuCoreTools

• Front-end interface to CobraDroid features

Demo!

Future Research & Plans

• Move to Ice Cream Sandwich (4.0.0+)

• Expand hooking capabilities
• Add “payload” action handler

• More “man in the middle” capabilities
• SQL database queries

• Intents (broadcast & directed)

Getting More Information

• Check my website & blog for updates, technical material, etc.

• http://www.thecobraden.com

• http://blog.thecobraden.com

• Getting CobraDroid (beta)

• http://www.thecobraden.com/projects/cobradroid

• https://github.com/jakev/CobraDroidBeta (source)

Questions & Answers

