
Put a Sock(et) in it!

Understanding and Attacking Sockets
on Android

Jake Valletta

April 16, 2016

Who Am I

• Senior Consultant at Mandiant

• Mobile security researcher

• Beer drinker

• @jake_valletta

2 https://www.thecobraden.com

Agenda

• Introduction to Sockets

• IPC and Sockets on Android

• Attacking Android Sockets

• Questions

3 https://www.thecobraden.com

What’s a Socket?

4 https://www.thecobraden.com

Sockets are…

• A mechanism for Inter Process Communication (IPC)

– Across a network

– On a local system

• Typically bi-directional

• Foundational to the Internet and modern operating systems

5 https://www.thecobraden.com

Why do we Care?

• Sockets are used by critical components of the Android
operating system

– OEMs don’t always do things correctly

• Sockets routinely lead to security vulnerabilities on Android
Devices

– CVE-2011-1823: vold accepted AF_NETLINK connections from
arbitrary processes

– “weaksauce”: Exposed /dev/socket/dmagent AF_UNIX socket
can root HTC phones

– /dev/socket/fotabinder (LG), /dev/socket/init_runit, …

– …

6 https://www.thecobraden.com

Using Sockets

• APIs exist for most programming languages

– Python (“socket” module)

– Java (“java.net.*” classes)

– Go (“net” package)

– Perl (“IO::Socket::*” module)

• All roads lead to Rome system calls

– <sys/socket.h>

7 https://www.thecobraden.com

Socket System Calls (Server)

• socket(…)

– return file descriptor

– domain, type, and protocol arguments

• bind(…)

– Associate file descriptor with PID/IP/port/file (depends!)

• listen(…)

– Indicate listening for connection on socket file descriptor

• accept(…) (Blocking!)

– Accept connections from socket file descriptor

– Returns new client connection file descriptor

8 https://www.thecobraden.com

Socket System Calls (Client)

• socket(…)

– return file descriptor

– domain, type, and protocol arguments

• bind(…)

– Associate file descriptor with PID/IP/port/file (depends!)

• connect(…)

– Connect socket file descriptor to supplied socket IP/port/file

– Not always required

9 https://www.thecobraden.com

Socket System Calls (Data Transfer)

• Sending data:

– send(…) / sendto(…) / sendmsg(…) / write(…)

• Receiving data:

– recv(…) / recvfrom(…) / recvmsg(…) / read(…)

10 https://www.thecobraden.com

Socket Domains

• Maintained by kernel

– include/linux/socket.h

• AF_INET + AF_INET6

• AF_UNIX (also called AF_LOCAL)

• AF_NETLINK

• …

11 https://www.thecobraden.com

Socket Types

• Maintained by kernel

– include/linux/net.h

• SOCK_STREAM (e.g. “TCP”)

– Sequential, reliable, two-way, connection-based

• SOCK_DGRAM (e.g. “UDP”)

– connectionless, unreliable

• SOCK_SEQPACKET

– Sequential, reliable, two-way, connection-based, fixed-max
length

• SOCK_RAW

– “you’re on your own”

• …

12 https://www.thecobraden.com

Socket Domain: AF_INET + AF_INET6

• Internet Protocol (IP) sockets

– Designed to traverse networks

• What most people simply call “sockets”

• “bind()” call expects IP address and port

• Types: SOCK_STREAM for TCP, SOCK_DGRAM for UDP

13 https://www.thecobraden.com

Socket Domain: AF_UNIX

• UNIX domain sockets (UDS)

– Local only

– More lightweight than AF_INET

– process <-> process

• “bind()” call expects socket-type filename or abstract name

– Abstract always starts with null byte (‘\0’)

• Types: SOCK_STREAM, SOCK_DGRAM, SOCK_SEQPACKET

14 https://www.thecobraden.com

Socket Domain: AF_UNIX

15 https://www.thecobraden.com

File UNIX Socket

Abstract UNIX Socket

Note the \0

Socket Domain: AF_NETLINK

• Communication between kernel and user space

• “bind()” call expects PID and netlink group

– Groups are maintained by kernel

• include/uapi/linux/netlink.h

• Types: SOCK_DGRAM, SOCK_RAW (doesn’t actually
matter)

16 https://www.thecobraden.com

Sockets on Android

17 https://www.thecobraden.com

IPC on Android

• Android is built on Linux kernel so…

– Sockets, FIFO, pipes, ioctl, system calls, shared memory

• Android also provides Binder/Intents for doing IPC between
applications

– Primary app <-> app IPC mechanism

– Java and Java Native Interface (JNI)

18 https://www.thecobraden.com

Non-Application Socket IPC

• AF_UNIX sockets

– App <-> native daemons

• /dev/socket/*

• AF_NETLINK sockets

– Native daemon <-> kernel

• /system/bin/vold

• AF_INET sockets

– Others…?

• …but why?

19 https://www.thecobraden.com

Finding Sockets

• Kernel maintains lists of sockets in /proc/net/ directory

• Formats are not easy to parse

• ‘/system/bin/netstat’ utility parses these files but…

– Android uses a stripped down version of netstat

20 https://www.thecobraden.com

?

Finding Sockets (cont.)

• Solution #1: Compile your own `netstat`

– Meh.

• Solution #2: Upload `busybox` binary

– https://busybox.net/downloads/binaries/latest/

21 https://www.thecobraden.com

https://busybox.net/downloads/binaries/latest/
https://busybox.net/downloads/binaries/latest/

Finding Sockets (cont.)

• Flags, flags, flags

– -l – Listening sockets

– -t – TCP sockets

– -u – UDP sockets

– -x – UNIX sockets

– -e – Extra information

– -p – Print process ID and program name (only if you have
permission!)

22 https://www.thecobraden.com

Finding Sockets: AF_INET

23 https://www.thecobraden.com

• busybox netstat -pletu

Finding Sockets: AF_UNIX

24 https://www.thecobraden.com

• busybox netstat -plex

Finding Sockets: AF_UNIX

25 https://www.thecobraden.com

• busybox netstat -plex

Abstract contains ‘@’

File shows path

Finding Sockets: AF_NETLINK

26 https://www.thecobraden.com

• busybox’s netstat doesn’t parse AF_NETLINK

• You’ll need to parse /proc/net/netlink file

– (more on this later)

Connecting to Sockets

27 https://www.thecobraden.com

• Method #1: `adb` forwarding

– Allows tcp, localabstract, localfilesystem, and more!

– Write a Python client that talks to forwarded or use `nc`

Connecting to Sockets (cont.)

28 https://www.thecobraden.com

• Method #2: Compile and upload `socat`

– Super flexible command-line utility

– TCP, TCPv6, UDP, UDPv6, UNIX (file + abstract)

– http://core.nctritech.com/do/socat-arm-static (WARNING –
Not mine!)

http://core.nctritech.com/do/socat-arm-static
http://core.nctritech.com/do/socat-arm-static
http://core.nctritech.com/do/socat-arm-static
http://core.nctritech.com/do/socat-arm-static
http://core.nctritech.com/do/socat-arm-static
http://core.nctritech.com/do/socat-arm-static

Connecting to Sockets (cont.)

29 https://www.thecobraden.com

• Method #3: Create a Java application

– Public “LocalSocket” and “LocalSocketAddress” classes (UNIX)

– Non-Public “NativeDaemonConnector” class (UNIX)

– Public “Socket” class (INET)

Connecting to Sockets (cont.)

30 https://www.thecobraden.com

• Method #3: Create a Java application

– Public “LocalSocket” and “LocalSocketAddress” classes (UNIX)

– Non-Public “NativeDaemonConnector” class (UNIX)

– Public “Socket” class (INET)
Abstract UNIX

‘/dev/socket/netd’ UNIX

Connecting to Sockets (cont.)

31 https://www.thecobraden.com

• Method #4: Create a C/C++ program

– Slowest method, but also most powerful

– Works with all types of sockets, including AF_NETLINK

Attacking Android Sockets

32 https://www.thecobraden.com

Device Testing Framework

• Modular framework for testing Android devices

– https://github.com/jakev/dtf

– https://github.com/jakev/dtfmods-core

• Modules for data collection and processing

• Modules for determining potential security flaws

33 https://www.thecobraden.com

https://github.com/jakev/dtf
https://github.com/jakev/dtf
https://github.com/jakev/dtfmods-core
https://github.com/jakev/dtfmods-core
https://github.com/jakev/dtfmods-core
https://github.com/jakev/dtfmods-core
https://github.com/jakev/dtfmods-core

Who is Listening?

• Java applications

– AF_INET

– AF_UNIX

• Native binaries (“daemons”)

– AF_INET

– AF_UNIX

– AF_NETLINK

• The kernel

– AF_NETLINK

34 https://www.thecobraden.com

AF_INET Example

• Uncommon..

– Why would you want an application to listen on a socket locally
anyways?

• …but still happens!

35 https://www.thecobraden.com

AF_INET Example

• Determining who is listening can be a challenge*

• Searching in Java applications:

– grep application DEX for ServerSocket, or use dtf ‘dexsearch’

– Reverse application and determine protocol

36 https://www.thecobraden.com

* Without root privileges

AF_INET Example

• Searching in native binaries:

– Determine running processes

• adb shell ps

– Pull binaries from “/(vendor|system)/(s|x)?bin/.*”

• adb pull …

– Look for “socket”, “bind”, “listen”, “accept” dynamic symbols

• nm –D …

– Reverse binary to determine domain/type and bind parameters

• Radare2, IDA Pro

37 https://www.thecobraden.com

AF_INET Example

• turbohacker.sh

38 https://www.thecobraden.com

?

AF_INET Example

• Use ‘adb forward’ with `nc` to interact with TCP socket

• Use `socat` on device to interact with UDP socket

• Pro-tip: Always check the logs with `adb logcat`

39 https://www.thecobraden.com

AF_UNIX Example

• UNIX sockets are very common and easy to search

– Especially abstract!

• Ask yourself – Is this socket part of the AOSP, or OEM
added?

40 https://www.thecobraden.com

AF_UNIX Example

• UNIX sockets are very common and easy to search

– Especially abstract!

• Ask yourself – Is this socket part of the AOSP, or OEM
added?

41 https://www.thecobraden.com

Added by OEM

AF_UNIX Example

• Searching in Java applications:

– Use grep or “dexsearch” module

• Searching in native binaries:

– Use one-liner from previous slide

42 https://www.thecobraden.com

AF_UNIX Example

• Use ‘adb forward’ or `socat`

• Pro-tip: Always check the logs with `adb logcat`

43 https://www.thecobraden.com

AF_NETLINK Example

• Most difficult to trace and replicate

– Could have a whole presentation on netlink sockets alone

• Parsing “/proc/net/netlink” contains netlink group and PID

44 https://www.thecobraden.com

Added by OEM

AF_NETLINK Example

• Determine group mappings from kernel source

– Usually in “include/uapi/linux/netlink.h”, but doesn’t have to
be

• Review netlink documentation on group protocol format

45 https://www.thecobraden.com

AF_NETLINK Example

• Determine format of netlink messages and permission
checks from kernel source

– “netlink_kernel_create(…)” kernel function to create netlink
sockets in kernel

46 https://www.thecobraden.com

drivers/misc/qseecom.c

Qualcomm-added netlink protocol

AF_NETLINK Example

• User space netlink sockets will use “socket()/bind()” but
not “listen()/accept()”

– “bind()” might not be used, depending on group/protocol

47 https://www.thecobraden.com

Conclusions

48 https://www.thecobraden.com

In conclusion…

• Sockets are an important component of Android platform
security

– AF_INET, AF_UNIX, and AF_NETLINK are the most common
forms of sockets used on Android

• Sockets can be enumerated, fuzzed, and researched mostly
without a rooted device

• Unprotected sockets can be used to interact with the
kernel, privileged applications, or native binaries

49 https://www.thecobraden.com

Questions? Comments?

50 https://www.thecobraden.com

Contact Me!

• GitHub: https://github.com/jakev/

• Blog: http://blog.thecobraden.com

• Website: https://www.thecobraden.com/

• Twitter: @jake_valletta

• Email: javallet@gmail.com

https://www.thecobraden.com 51

https://github.com/jakev/
http://blog.thecobraden.com/
https://www.thecobraden.com/
mailto:javallet@gmail.com

The End

52

Thanks!

