
Attacking the Core

Uncovering Vulnerabilities in Android
System Services

Jake Valletta

October 8, 2016

Who Am I

• Principal Consultant at Mandiant

• Mobile security researcher

• Beer drinker

• @jake_valletta

2 https://www.thecobraden.com

Agenda

• Introduction to Android System Services

• Enumerating System Services

• Attacking System Services

• Questions

3 https://www.thecobraden.com

Motivations

4 https://www.thecobraden.com

System Services

System services are Android’s man behind the curtain. Even if
they aren’t explicitly mentioned in Google’s app development,
documentation, anything remotely interesting in Android
goes through one of about 50 to 70* system services.

5 https://www.thecobraden.com

*Number is 100+ with Android
Nougat (7.0)

Why Target System Services?

• System services run in privileged processes

– Mostly run as a “system”, “media”, or “radio”

– Mostly run in privileged SEAndroid context (pre-Nougat)

• Heavily modified by device OEMs

• Largely undocumented and riddled with bugs

– Permission issues

– Input validation

6 https://www.thecobraden.com

System Service Architecture

7 https://www.thecobraden.com

http://www.opersys.com/downloads/cc-slides/android-debug/slides-main-150423.html

System Service Architecture

1. Each application process is initially fork()ed from the
“Zygote” process

– Zygote is loaded with Android APIs

2. Developer calls published SDK function

– SDK functions wrap Binder clients

3. Application interacts with system service using Binder
interface

– System service code exists in a separate process

– Permissions checks occur in the system service

4. System service interacts with privileged
devices/files/sockets

8 https://www.thecobraden.com

System Service Architecture - Binder

• Binder is the primary IPC mechanism on Android

– Abstracts object marshalling

– Exposed at /dev/binder

• API defined using Android Interface Definition Language
(“AIDL”) in Java

• API calls are by name, but implemented as transaction
numbers (determined at compile time)

– doCommand(..)  TRANSACTION_doCommand = 12

9 https://www.thecobraden.com

SMS System Service

• Scenario: How can we (securely) allow applications to send
SMS messages?

– Must prohibit unauthorized applications from sending SMS

– App developers must have a standardized API

– Must work across all Android versions and all devices

10 https://www.thecobraden.com

SMS System Service

• Use SmsManager class and call “sendTextMessage(..)”

• Explicitly re quest “android.permission.SEND_SMS”
permission

11 https://www.thecobraden.com

http://stackoverflow.com/questions/26311243/sending-sms-programmatically-without-opening-
message-app

SMS System Service

• “sendTextMessage(..)” is a wrapper for interfacing with
“isms” system service

– Uses standard AIDL binder client

12 https://www.thecobraden.com

SmsManager.java

SMS System Service

13 https://www.thecobraden.com

UIccSmsController.java

IccSmsInterfaceManager.java

SMS System Service

• Apps require permission (thus warning the user)

• All sensitive code is contained in a privileged process

– App process only standardizes API

• Process is standardized in developer documentation

• Device OEMs only need to focus on implementing
functionality at a very low level

14 https://www.thecobraden.com

Enumerating System Services

15 https://www.thecobraden.com

Where to Look

• List registered services using `service` utility on device

– Service listing includes AIDL class name

16 https://www.thecobraden.com

Finding Things Manually

• Majority of system service AIDL files exist within Android
frameworks

– Exist in “/system/framework/”

17 https://www.thecobraden.com

Finding Things Manually

• “$Stub” class contains transactions by ID

• “$Stub$Proxy” class contains function names, arguments,
and return value

18 https://www.thecobraden.com

ISms$Stub$Proxy.java

ISms$Stub.java

Finding Things Manually

• Find the actual system service implementation

• Could be in framework files or in a privileged application

19 https://www.thecobraden.com

grep –r “super.*${AIDL_name}\$Stub” decoded-apps/* unframeworks/*

Finding Things Quickly - dtf

• Use Android Device Testing Framework (“dtf”) to enumerate
and diff system services

– https://github.com/jakev/dtf

• Modules specifically used to enumerate system services

– https://github.com/jakev/dtfmods-core

20 https://www.thecobraden.com

https://github.com/jakev/dtf
https://github.com/jakev/dtfmods-core
https://github.com/jakev/dtfmods-core
https://github.com/jakev/dtfmods-core

Finding Things Quickly - dtf

• “dtf” is a framework to answer specific questions:

– Which applications run as system?

– Which frameworks have been added by OEMs?

– Which applications run as “system_app” SEAndroid?

– Which applications used the class “java.lang.Runtime”?

– What is the API for the system service
“network_management”?

21 https://www.thecobraden.com

Finding Things Quickly - dtf

• Pull and process frameworks: frameworkdb

• Process DEX bytecode to databases: frameworkdexdb

• Process services database: sysservicedb

• (optionally process SEAndroid data: sedb)

22 https://www.thecobraden.com

Finding Things Quickly - dtf

23 https://www.thecobraden.com

SEAndroid Context

AIDL Class Name

Transaction ID

Method Prototype

Finding Things Quickly - dtf

24 https://www.thecobraden.com

dtf sysservicedb diff -Z --all

Finding Things Quickly - dtf

25 https://www.thecobraden.com

• Can use the findimp module to find a system service
implementation class

Attacking System Services

26 https://www.thecobraden.com

Analyzing the Service

• Reverse the implementation to determine the arguments

– Convert DEX to JAR (enjarify) and use a Java disassembler

• “BytecodeViewer” has many disassemblers built in

– Review the Smali classes

27 https://www.thecobraden.com

Analyzing the Service

• Look for security checks (or lack of)

– Permission checks: “Context.enforceCallingOrSelfPermission(..)”

– User ID checks: “Binder.getCallingPid()” / “Process.myPid()”

28 https://www.thecobraden.com

“network_management” Service

“input” Service

Analyzing the Service - Pitfalls

• No permission checks

• Permission check occurs in API, not system service

• Incorrect permission protectionLevel

– “normal” / “dangerous” on critical services

• Exposed socket / device

– Careful using abstract sockets!

29 https://www.thecobraden.com

Using `service`

• Ideal for simple method arguments and standalone calls

30 https://www.thecobraden.com

Fuzzing using `service`

31 https://www.thecobraden.com

• A surprising number of services fail when called with no
arguments 

Analyzing the Service - OEMs

• More likely to contain vulnerabilities*

• Use “diff” function of sysservicedb module

32 https://www.thecobraden.com

*don’t quote me here

Using Android Studio

• Tricky to setup, but allows for more complex arguments
and consecutive calls

– Need to tell Android Studio about the ServiceManager class (non-
public)

• Should be in “/system/framework/framework.jar”

– Need to tell Android Studio about your Binder API

• If different from AOSP SDK

33 https://www.thecobraden.com

Using Android Studio

• Convert “services.jar” and DEX that contains AIDL API to
JARs

– “telephony-common”, “framework”, “framework2”, “ext”

– Add hack to “build.gradle” to tell AS about the classes, but not compile

34 https://www.thecobraden.com

configurations{

 provided

}

dependencies {

 compile <other dependencies>

 provided files('libs/framework.jar')

 provided files('libs/framework2.jar')

 provided files('libs/services.jar')

}

Using Android Studio

• Setup binder using “Stub.asInterface(..)” method

• Call methods on returned object

35 https://www.thecobraden.com

AidlClass ac =

 AidlClass.Stub.asInterface(

 ServiceManager.getService(SERVICE_NAME));

try {

 Log.d("ServiceTest", ac.function());

} catch (RemoteException e) {

 e.printStackTrace();

}

Using Android Studio

36 https://www.thecobraden.com

CVE2016-2060

37 https://www.thecobraden.com

• Command injection in “network_management” system
service

– Code execution as “radio”

– “iface” argument not sanitized by “netd” daemon

CVE2016-2060

38 https://www.thecobraden.com

• Spot the bug!

CVE2016-2060

39 https://www.thecobraden.com

• Introduced in 2011

• “radio” user has a number of permissions not accessible to third-
party applications

• “netd” SEAndroid context is not very powerful on newer devices

– Can access SMS data on older devices

– Can modify a number of system properties

Recap

40 https://www.thecobraden.com

Recap

41 https://www.thecobraden.com

• System services are the core of Android

• System services can be enumerated manually, or with automated
tools

• Compromising system services routinely leads to privilege
escalation, denial of service, and information disclosure

Questions? Comments?

42 https://www.thecobraden.com

Contact Me!

• GitHub: https://github.com/jakev/

• Blog: http://blog.thecobraden.com

• Website: https://www.thecobraden.com/

• Twitter: @jake_valletta

• Email: javallet@gmail.com

https://www.thecobraden.com 43

https://github.com/jakev/
http://blog.thecobraden.com/
https://www.thecobraden.com/
mailto:javallet@gmail.com

The End

44

Thanks!

