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Who Am I 

• Principal Consultant at Mandiant 

• Mobile security researcher 

• Beer drinker 

• @jake_valletta 
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Agenda 

• Introduction to Android System Services 

• Enumerating System Services 

• Attacking System Services 

• Questions 
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Motivations 
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System Services 

System services are Android’s man behind the curtain. Even if 
they aren’t explicitly mentioned in Google’s app development, 
documentation, anything remotely interesting in Android 
goes through one of about 50 to 70* system services. 
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*Number is 100+ with Android 
Nougat (7.0) 



Why Target System Services? 

• System services run in privileged processes 

– Mostly run as a “system”, “media”, or “radio” 

– Mostly run in privileged SEAndroid context (pre-Nougat) 

• Heavily modified by device OEMs 

• Largely undocumented and riddled with bugs 

– Permission issues 

– Input validation 
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System Service Architecture 
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http://www.opersys.com/downloads/cc-slides/android-debug/slides-main-150423.html 



System Service Architecture 

1. Each application process is initially fork()ed from the 
“Zygote” process 

– Zygote is loaded with Android APIs 

2. Developer calls published SDK function 

– SDK functions wrap Binder clients 

3. Application interacts with system service using Binder 
interface 

– System service code exists in a separate process 

– Permissions checks occur in the system service 

4. System service interacts with privileged 
devices/files/sockets 
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System Service Architecture - Binder 

• Binder is the primary IPC mechanism on Android 

– Abstracts object marshalling 

– Exposed at /dev/binder 

• API defined using Android Interface Definition Language 
(“AIDL”) in Java 

• API calls are by name, but implemented as transaction 
numbers (determined at compile time) 

– doCommand(..)  TRANSACTION_doCommand = 12 
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SMS System Service 

• Scenario: How can we (securely) allow applications to send 
SMS messages? 

– Must prohibit unauthorized applications from sending SMS 

– App developers must have a standardized API 

– Must work across all Android versions and all devices 
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SMS System Service 

• Use SmsManager class and call “sendTextMessage(..)” 

• Explicitly re quest “android.permission.SEND_SMS” 
permission 
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http://stackoverflow.com/questions/26311243/sending-sms-programmatically-without-opening-
message-app 



SMS System Service 

• “sendTextMessage(..)” is a wrapper for interfacing with 
“isms” system service 

– Uses standard AIDL binder client 
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SmsManager.java 



SMS System Service 
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UIccSmsController.java 

IccSmsInterfaceManager.java 



SMS System Service 

• Apps require permission (thus warning the user) 

• All sensitive code is contained in a privileged process 

– App process only standardizes API 

• Process is standardized in developer documentation 

• Device OEMs only need to focus on implementing 
functionality at a very low level 
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Enumerating System Services 
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Where to Look 

• List  registered services using `service` utility on device 

– Service listing includes AIDL class name 
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Finding Things Manually 

• Majority of system service AIDL files exist within Android 
frameworks 

– Exist in “/system/framework/” 
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Finding Things Manually 

• “$Stub” class contains transactions by ID 

• “$Stub$Proxy” class contains function names, arguments, 
and return value 
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ISms$Stub$Proxy.java 

ISms$Stub.java 



Finding Things Manually 

• Find the actual system service implementation 

• Could be in framework files or in a privileged application  
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grep –r “super.*${AIDL_name}\$Stub”  decoded-apps/* unframeworks/* 



Finding Things Quickly - dtf 

• Use Android Device Testing Framework (“dtf”) to enumerate 
and diff system services 

– https://github.com/jakev/dtf 

• Modules specifically used to enumerate system services 

– https://github.com/jakev/dtfmods-core 
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https://github.com/jakev/dtf
https://github.com/jakev/dtfmods-core
https://github.com/jakev/dtfmods-core
https://github.com/jakev/dtfmods-core


Finding Things Quickly - dtf 

• “dtf” is a framework to answer specific questions: 

– Which applications run as system? 

– Which frameworks have been added by OEMs? 

– Which applications run as “system_app” SEAndroid? 

– Which applications used the class “java.lang.Runtime”? 

– What is the API for the system service 
“network_management”? 
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Finding Things Quickly - dtf 

• Pull and process frameworks: frameworkdb 

• Process DEX bytecode to databases: frameworkdexdb 

• Process services database: sysservicedb 

• (optionally process SEAndroid data: sedb) 
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Finding Things Quickly - dtf 
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SEAndroid Context 

AIDL Class Name 

Transaction ID 

Method Prototype 



Finding Things Quickly - dtf 
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dtf sysservicedb diff -Z --all  



Finding Things Quickly - dtf 
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• Can use the findimp module to find a system service 
implementation class 



Attacking System Services 
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Analyzing the Service 

• Reverse the implementation to determine the arguments 

– Convert DEX to JAR (enjarify) and use a Java disassembler 

• “BytecodeViewer” has many disassemblers built in 

– Review the Smali classes 
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Analyzing the Service 

• Look for security checks (or lack of) 

– Permission checks: “Context.enforceCallingOrSelfPermission(..)” 

– User ID checks: “Binder.getCallingPid()” / “Process.myPid()” 
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“network_management” Service 

“input” Service 



Analyzing the Service - Pitfalls 

• No permission checks 

• Permission check occurs in API, not system service 

• Incorrect permission protectionLevel 

– “normal” / “dangerous” on critical services 

• Exposed socket / device 

– Careful using abstract sockets! 
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Using `service` 

• Ideal for simple method arguments and standalone calls 
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Fuzzing using `service` 
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• A surprising number of services fail when called with no 
arguments  



Analyzing the Service - OEMs 

• More likely to contain vulnerabilities* 

• Use “diff” function of sysservicedb module 
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*don’t quote me here 



Using Android Studio 

• Tricky to setup, but allows for more complex arguments 
and consecutive calls 

– Need to tell Android Studio about the ServiceManager class (non-
public) 

• Should be in “/system/framework/framework.jar” 

– Need to tell Android Studio about your Binder API 

• If different from AOSP SDK 
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Using Android Studio 

• Convert “services.jar” and DEX that contains AIDL API to 
JARs 

– “telephony-common”, “framework”, “framework2”, “ext” 

– Add hack to “build.gradle” to tell AS about the classes, but not compile 
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configurations{ 

    provided 

} 

  

dependencies { 

    compile <other dependencies> 

    provided files('libs/framework.jar') 

    provided files('libs/framework2.jar') 

    provided files('libs/services.jar') 

} 



Using Android Studio 

• Setup binder using “Stub.asInterface(..)” method 

• Call methods on returned object 
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AidlClass ac  =  

 AidlClass.Stub.asInterface(

 ServiceManager.getService(SERVICE_NAME)); 

 

try { 

 Log.d("ServiceTest", ac.function()); 

} catch (RemoteException e) { 

 e.printStackTrace(); 

} 



Using Android Studio 
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CVE2016-2060 
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• Command injection in “network_management” system 
service 

– Code execution as “radio” 

– “iface” argument not sanitized by “netd” daemon 



CVE2016-2060 
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• Spot the bug! 



CVE2016-2060 
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• Introduced in 2011 

• “radio” user has a number of permissions not accessible to third-
party applications 

• “netd” SEAndroid context is not very powerful on newer devices 

– Can access SMS data on older devices 

– Can modify a number of system properties 

 



Recap 
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Recap 
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• System services are the core of Android 

• System services can be enumerated manually, or with automated 
tools 

• Compromising system services routinely leads to privilege 
escalation, denial of service, and information disclosure 



Questions? Comments? 
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Contact Me! 

• GitHub: https://github.com/jakev/ 

• Blog: http://blog.thecobraden.com 

• Website: https://www.thecobraden.com/ 

• Twitter: @jake_valletta 

• Email: javallet@gmail.com 
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The End 
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Thanks! 


